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A new renormalization group method is developed and applied to the task of resumming the virial series for
the compressibility factor of a hard-sphere fluid. Results are compared with the predictions of earlier equations
of state and with the outputs of computer simulations.@S1063-651X~96!12312-6#
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I. INTRODUCTION

The equation of state for an imperfect gas may be written
in the form

p5kBTnf~n,T!, ~1.1!

with n the number density,T the absolute temperature, andf
the compressibility factor. The coefficientsBj occurring in
the virial expansion

f~n,T!511(
j51

`

Bj11~T!nj ~1.2!

are functions of temperature and functionals of the particle
interactions. When these interactions are central and pair ad-
ditive, the associated interparticle potential function is com-
monly expressed in terms of a characteristic ranges, a char-
acteristic energy e, and a number of additional,
dimensionless parameters,j, viz., u(r )5ev(r /s,j). The
compressibility factor of Eq.~1.2! then can be written in the
alternative form

f~n,T!511(
j51

`

B̃j11~ T̃,j!h j , ~1.3!

with the symbol

h5
ps3

6
n, ~1.4!

denoting a dimensionless volume fraction and where

B̃j~ T̃,j!5Bj~T!Y S ps3

6 D j21

~1.5!

is a function of the ‘‘reduced temperature’’T̃5kBT/e and of
the parametersj.

The evaluation ofBj ~or B̃j ! involves integration over the
coordinates ofj interacting particles@1#. The difficulty and
expense of performing this calculation rise rapidly with the
value of the indexj . The first five virial coefficients have
been evaluated for the Lennard-Jones 6-12 potential@2#.
Much less is known about the virial coefficients for other,
continuous two-parameter potentials@2#. The second virial
coefficient can be easily evaluated for the more realistic mul-

tiparameter potentials, but few if any higher order coeffi-
cients appear to have been examined for these potentials.

The system about which the most is known is a dense gas
of rigid spheres. Due to the singularity of the hard-sphere
potential the virial coefficients for this case are independent
of temperature. Eight have been evaluated@2,3#. The corre-
sponding virial expansion of the compressibility factor is

f~h!5114h110h2118.365h3128.24h4139.5h5

156.5h6170.779h71••• . ~1.6!

As illustrated in Fig. 1, computations based on this truncated,
eight-term virial series are in excellent agreement with the
results of computer simulations, over the entire range of ex-
istence of the hard-sphere disordered fluid phase, 0<h&0.6.
We are fortunate in this case to have available so many virial
coefficients. However, as noted in the preceding paragraph,
much less information usually is available. This, in turn, se-
verely limits our ability to produce reliable estimates of the
compressibility factor. For example, it is evident from Fig. 1
that the more severely truncated 3-virial coefficient approxi-
mation fails to produce accurate estimates off~h! for vol-
ume fractions as small as 0.20. It is therefore natural to
search for means by which a knowledge of only a very few
virial coefficients can be used to generate reliable estimates
of f~h! for all values of the volume fraction.

In this paper we propose a new method for achieving this
goal. Our procedure is based on renormalization group
theory@4,5#. It is restricted to stable gas phases for which the
pressure is a positive definite quantity. The hard-sphere dis-
ordered fluid phase therefore serves as an excellent test case
for the method. Furthermore, because the compressibility
factor for this phase is so well described by the truncated
virial series~1.6!, we adopt this polynomial approximation
for f~h! as a~nearly exact! standard to which all other esti-
mates will be compared.

In the next section the basic principles of the new renor-
malization group method are outlined. Section III is devoted
to the renormalization group~RG! calculation of the hard-
sphere compressibility factor and to the comparison of this
result with estimates off~h! obtained by other methods. In
this context it should be emphasized that the purpose of this
study has not been to produce a new and/or better equation
of state for rigid spheres but to test our RG theory and
thereby illustrate its capability~or lack thereof! of treating a
specific and familiar problem of statistical physics. The final
section includes a discussion of results and of other possible
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applications of the method. Supplementary mathematical re-
sults are contained in three Appendixes.

II. THE RENORMALIZATION GROUP METHOD

Most of the many-body systems encountered in statistical
physics can be characterized by two dimensionless param-
eters. One, which we denote byg, gauges the strength of the
particle interactions. Systems for whichg50 are ‘‘ideal’’
and their properties are known exactly. The second param-
eter, t, usually ~but not always! is related to the size of the
system through some variable such as the particle density.
Any physical quantity then can be represented by a function
f (t,g) of these two parameters. The standard thermodynamic
perturbation procedure invariably amounts to a simple Ma-
claurin expansion of the functionf (t,g) in powers of the
‘‘bare coupling variable’’g:

f ~ t,g!511 f 1~ t !g1 1
2 f 2~ t !g

21••• . ~2.1!

Here we have assumed~without loss of generality! that the
function f (t,g) is so defined thatf (t,0)51.

At this point we briefly interject a few comments intended
to demonstrate the connection between these general remarks
and the previously described hard-sphere compressibility
factor problem. In the case of the hard-sphere fluid we iden-
tify the ‘‘bare’’ interaction parameter with a volume fraction
h0 so small that some low-order, polynomial truncation of
the virial series~1.3! produces an accurate estimate of the
compressibility factor. The parametert is taken equal to the
ratio of the actual volume fraction to that of the reference
state. The pair of variables

g5h0 ,

~2.2!

t5h/h05H n/n0 , if s0 is constant

~s/s0!
3, if n is constant

is capable of describing two distinct scenarios. In the first,
we increase the number density of particles while maintain-
ing a constant ‘‘excluded volume’’ range parameters0. In
the second, the system is crowded by increasing the range
parameter without altering the particle number density. Us-
ing the variables defined by Eq.~2.2!, we rewrite the virial
expansion~1.3! in the form

f~ tg![f~ t,g!511(
j51

`
1

j !
f j~ t !g

j , ~2.3!

with

f j~ t !5 j ! B̃j11~ T̃!t j . ~2.4!

The compressibility factor functionf(t,g) defined by Eqs.
~2.3! and ~2.4! is an example of the functionf (t,g) intro-
duced in the preceding paragraph.

Truncated, polynomial approximations to the Maclaurin
series~2.1! generally cannot be expected to produce accurate
estimates of the functionf (t,g) for large values of the vari-
able t. The most fundamental idea of the renormalization
group method is that instead of using the perturbation series
one constructs an equation of evolution forf (t,g), wherein
~for historical reasons! the parametert is interpreted as a
‘‘generalized time.’’ In group theoretical jargon we assume
that the functionf (t,g) is a representation of a continuous
one-parameter group~or semigroup!, with the variablet>1

FIG. 1. Compressibility factors generated by various theories and computer simulations. The lower~dot-dashed! curve was obtained
using only the second and third virial coefficients. The upper, solid curve is the eight-term virial polynomial of Eq.~1.6!; it is indistinguish-
able on the scale of this graph from the PFRG equation of state, indicated by3. The heavy dashed curve~––! is obtained from the
asymptotic formula, Eq.~3.18!, and the dotted curve~---! indicates results produced by the iteration based on the PFRG relationship of Eq.
~3.9!. The squares~h!, circles with dots~(!, triangles~n!, circles~s!, and diamonds~L! are results of the computer simulations reported
in Refs.@15–19#, respectively. RCP and OCP indicate volume fractions appropriate to random close packing and ordered closest packing,
respectively. FP is the ‘‘freezing point’’ density of Ref.@20#.
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playing the role of the group parameter. Once the equation of
evolution ~Lie equation! for this function has been estab-
lished we can calculatef (t,g) for a whole range of values of
the group parametert, including those for which the initial
perturbation series may have been unreliable or even diver-
gent. The crucial step in applying the renormalization group
method is that of deciding for which group the given func-
tion f is a representation. In other words, what is the func-
tional equation of the group operation satisfied by the func-
tion f? The form of the group operation determines the form
of the ~Lie! equation of evolution. This in turn fixes the
behavior of the functionf (t,g) at values oft greater than
those for which the original perturbation series was valid. So
far as we have been able to determine, nothing can be in-
ferred about the form of this functional equation unless re-
strictions are imposed upon the physical quantityf (t,g).
Here we assume this function to be positive definite,f (t,g)
.0, over the entire range of the group parametert.

The next step is to introduce the ‘‘transfer function’’
f̃ (t,g), defined in terms of the original functionf (t,g) by
the formula

f̃ ~ t,g!5 f ~ t,g!/ f ~1,g!. ~2.5!

This function also can be called the ‘‘normalized’’ form of
f (t,g), since it exhibits the propertyf̃ (1,g)51. Evidently,
the transfer function is an elementary solution of the equa-
tion of evolution for f (t,g).

To derive the functional equation satisfied by the transfer
function we observe that every positive definite function
f̃ (t,g) can be written in the form

f̃ ~ t,g!5expH E
1

t

dxL~x,g!J , ~2.6!

with

L~x,g!5
]

]x
ln f̃ ~x,g!. ~2.7!

By applying Eq.~2.6! to two different values of the param-
eter t we find that

f̃ ~x,g!5 f̃ ~z,g!FexpH E
1

x/z

dtL~ tz,g!J G z. ~2.8!

This formula can be identified as the functional equation for
the group operation provided that there exists a function
ḡ(z,g), known as the ‘‘effective’’ or ‘‘running’’ coupling
function, which allows the integrand factorL(tz,g) to be
written as

L~ tz,g!5L„t,ḡ~z,g!…. ~2.9!

This effective coupling function is required to satisfy the
initial condition ḡ(1,g)5g. We then can rewrite Eq.~2.8! as
the functional equation

f̃ ~ tz,g!5 f̃ ~z,g!@ f̃ „t,ḡ~z,g!…#z, ~2.10!

defining the group operation. Equation~2.10! may be written
in the alternative form

f̃ ~x,g!/ f̃ ~z,g!5@ f̃ „x/z,ḡ~z,g!…#z. ~2.11!

The left-hand side of this last equation can be identified as
the ‘‘renormalized’’ form of the initial functionf (t,g); the
ratio f̃ (x,g)/ f̃ (z,g) is equal to unity for the group parameter
valuex5z, whereasf̃ (x,g)[ f (x,g)/ f (1,g) equals unity for
x51.

The functional equation satisfied by the effective coupling
function ḡ(t,g) is obtained by noting that the value of the
transfer function appearing on the left-hand side of Eq.
~2.10! remains the same when the order of the group param-
eters is interchanged in the producttz. The right-hand side of
Eq. ~2.10! will exhibit this same invariance only if~see Ap-
pendix A! the effective coupling function satisfies the famil-
iar functional equation@5#

ḡ~x,g!5ḡ„x/z,ḡ~z,g!…. ~2.12!

The Lie equations of evolution are obtained from Eqs.
~2.11! and~2.12! by differentiating with respect to the group
parameterx and then equatingx to z. This operation pro-
duces the following equations for the ‘‘renormalized flow’’
of our new renormalization group for positive definite func-
tions ~PFRG!:

] ln f̃ ~x,g!

]x
5g@ ḡ~x,g!#, ~2.13!

]ḡ~x,g!

] ln x
5b@ ḡ~x,g!#. ~2.14!

The functionsg(g) andb(g) are the so-called ‘‘infinitesimal
generators’’ of the PFRG transformation. They can be iden-
tified as functionals of the transfer function, viz.,

g~g!5
] f̃ ~x,g!

]x
U
x51

5 f 8~1,g!/ f ~1,g!, ~2.15!

b~g!5
]ḡ~x,g!

]x U
x51

5
f 9~1,g!/ f ~1,g!2g2~g!

~]g/]g!
. ~2.16!

Here f 8(1,g)5] f (x,g)/]xux51 and f 9(1,g)5]2f (x,g)/
]x2ux51. It is established in Appendix B that the Eqs.~2.13!
and~2.14! are unique, provided that the infinitesimal genera-
tor g(g) is a single valued function of the ‘‘bare’’ coupling
constantg. An alternative pair of evolution equations is de-
rived in Appendix C.

The flow equations~2.13! and ~2.14! could be solved for
f̃ (t,g) and ḡ(x,g) if the infinitesimal generatorsb and g
were known. However,b andg are themselves functionals
of f (t,g). Some approximation must be introduced in order
to produce estimates of the infinitesimal generators. For this
purpose we use the initial polynomial approximation to the
function f̃ (x,g). Since this approximation works well for
x'1, the procedure should produce reasonable estimates for
b(g) andg(g); the derivatives occurring in Eqs.~2.15! and
~2.16! are to be evaluated atx51.

The behavior of the transfer function at large values of the
group parameter is controlled by the asymptotic properties of
the effective coupling functionḡ(x,g). According to Eqs.
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~2.13! and ~2.14!, this function determines the behavior of
the infinitesimal generators of the renormalization flow. The
properties ofḡ(x,g) for large values ofx are determined by
the stable fixed points of the renormalization group transfor-
mation. These fixed points are solutions of the equation

b~g* !50. ~2.17!

According to the Lie equations~2.13! and~2.14!, the behav-
ior of f (t,g) at large values of the group parameter (x→`)
depends on the asymptotic limit of the effective coupling
function ḡ(x,g), if such a limit does indeed exist.

In the neighborhood of the fixed pointg*.0 we can
write the effective coupling function in the form

ḡ~x,g!5g*1dḡ~x,g! ~2.18!

and determine the deviationdḡ(x,g) from the linearized
equation

]

] ln x
dḡ5b1* dḡ~x,g!, ~2.19!

where

b1*5]b~g!/]gug5g* . ~2.20!

The solution of Eq.~2.19! is

dḡ~x,g!5~g2g* !xb1* . ~2.21!

The fixed pointg* is stable ifb1*,0, since only then does
the perturbation given by Eq.~2.21! vanish in the largex
limit.

The asymptotic behavior of the functionf̃ (t,g) can be
obtained by solving the~linearized! equation

] ln f̃ ~x,g!

]x
5g~g* !1g1~g* !~g2g* !xb1* , ~2.22!

wherein

g1~g!5]g/]g. ~2.23!

In the special case ofb1*521, the solution of Eq.~2.22! is

f ~x,g! ;
x→`

f ~x0 ,g!eg~g* !~x2x0!S xx0D
g1~g* !~g2g* !

. ~2.24!

For b1*Þ21 ~but b1*,0! the solution is given by

f ~x,g! ;
x→`

f ~x0 ,g!eg~g* !~x2x0!

3eg1~g* !~g2g* !~xb1
*112x

0

b1
*11

!/~b1*11!. ~2.25!

The system is ‘‘asymptotically free’’ ifg*50, in which
case the asymptotic form off (t,g) is given either by

f ~x,g! ;
x→`

f ~x0 ,g!S xx0D
g1~0!g

, b1*521, ~2.248!

or by

f ~x,g! ;
x→`

f ~x0 ,g!eg1~0!g~xb1
*112x

0

b1
*11

!/~b1*11!, b1*Þ21.

~2.258!

III. EQUATION OF STATE
OF THE HARD-SPHERE GAS

The general method developed in the preceding section
now will be applied to the ‘‘resummation’’ of the compress-
ibility factor virial series. In doing this we shall assume that
the initially available truncated virial series is thesecond
order polynomial,

f~ t,g!511f1~ t !g1 1
2f2~ t !g

2, ~3.1!

with @cf. Eqs.~2.3! and ~2.4!#

f1~ t !5B̃2~ T̃!t

and

f2~ t !52B̃3~ T̃!t2. ~3.2!

The transfer functionf̃(t,g) is then given by the series

f̃~ t,g!511f̃1~ t !g1 1
2 f̃2~ t !g

21•••, ~3.3!

with

f̃1~ t !5B̃2~ t21!,
~3.4!

f̃2~ t !52B̃3t
222B̃2

2t22B̃312B̃2
2.

From these we obtain the following second-order approxima-
tions to the infinitesimal generators of the PFRG transforma-
tion.

g~g!5B̃2g1~2B̃32B̃2
2!g2,

~3.5!

b~g!5
2B̃32B̃2

2

B̃2

g2.

They in turn lead to the formulas

ḡ~x,g!5
g

12
2B̃32B̃2

2

B̃2

g ln x

, ~3.6!

and

f~h!5f~h0!expH B̃2E
1

h/h0
dxF ḡ~x,h0!

1
2B̃32B̃2

2

B̃2

ḡ2~x,h0!G J , ~3.7!

respectively, for the effective coupling function and the com-
pressibility factor. Here,f~h0! denotes the compressibility
factor of the reference state which either is known or can be
calculated from the initial second order polynomial approxi-
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mation ~3.1!. It is also possible to treat the reference state
concentrationh0 and the corresponding compressibility fac-
tor f~h0! as adjustable parameters with values selected so as
to produce the best possible agreement with the ‘‘correct’’
compressibility factorf~h! data obtained either from the
available, eight-term virial series~1.6!, such as we have
elected to do, or from information generated by computer
simulations.@The formula~3.6! is the precise analogue of the
‘‘single-loop’’ estimate for the invariant charge constructed
in Appendix IX of Ref.@5#.#

The accuracy with which the PFRG formula~3.7! ap-
proximates the eight-term virial series~1.6! ~treated here as
‘‘correct’’ or ‘‘exact’’ ! depends upon the choice of the
‘‘bare’’ coupling constantg5h0 and the value of the corre-
sponding compressibility factorf~h0!. If the values off~h0!
are calculated directly from the series~1.6!, it is possible to
identify a value of the bare coupling constant for which the
standard deviation

1

N (
i51

N

@fVIRIAL ~h i !2fPFRG~h i !#
25s2~h0! ~3.8!

is a minimum. HerefVIRIAL andfPFRGdenote the compress-
ibility factors given by Eqs.~1.6! and ~3.7!, respectively.
This procedure is illustrated by Fig. 2, from which it follows
that the ‘‘optimum’’ choice forh0 is 0.166; the correspond-
ing value off~h0! is 2.0514. With this choice for the initial
point of the RG trajectory, the formula~3.7!—based only
upon the second and third virial coefficients—reproduces the
eight-term virial coefficient equation of state almost per-
fectly: the curves for the two are virtually indistinguishable
in Figs. 1 and 5.

In less fortunate circumstances the only available data
might be the values of the second and third virial coeffi-
cients. When this is the case, the optimization procedure just
described cannot be conducted. An alternative which works
begins by using the second order polynomial approximation
~3.1! to compute a trial value of the compressibility factor at
a very small value of the concentration. For the example
illustrated in Figs. 1 and 5 we selected the value ofh050.01

for this initial step, used the second order polynomial~3.1! to
calculate the corresponding value off~h0!, and then com-
putedf~h150.05! from the PFRG equation~3.7!. From this
point on, the iterative relationship

f~h i11!5f~h i !expH B̃2E
1

h i11 /h i
dxF ḡ~x,h i !

1
2B̃32B̃2

2

B̃2

ḡ2~x,h i !G J ~3.9!

was used to generate estimates of the compressibility factor
for successively larger values of the concentration. The cal-
culations were performed using a step sizeDh50.05 so that
h i115h i10.05. Results obtained in this way are included in
Table I and appear in Figs. 1 and 5 as the dotted lines~---!
that lie very close to the solid curves for the ‘‘exact,’’ eight-
term virial series.

The compressibility factor of the hard-sphere gas can be
estimated by other methods. Although it appears not to have
been done previously, a simple procedure for resumming the
truncated virial series~1.6! is to construct the corresponding
cumulant expansion@6#

ln fc~h!54h12h220.302h310.780h411.530h5

13.810h6212.605h71••• . ~3.10!

Closely related to this is the nonperturbative equation of state

fSH~h!5expF4hS 11
1

2
h D G ~3.11!

derived by Shinomoto@7#. Indeed, this equation of state is
precisely the same as the second order approximation to the
cumulant expansion~3.10!.

At least three other hard-sphere, algebraic equations of
state frequently are used. One of these, the Carnahan-Starling
formula @8#

FIG. 2. Mean squared deviations2~h0!, as de-
fined by Eq.~3.8!, plotted versus the ‘‘bare’’ cou-
pling constanth0.
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fCS~h!5
11h1h22h3

~12h!3
~3.12!

often is described as that which best agrees with the results
of computer simulations. Two others@9,10#,

fPY
c ~h!5

11h1h2

~12h!3
, ~3.13!

fPY
v ~h!5

112h13h2

~12h!3
, ~3.14!

originate from solutions of Percus-Yevick~PY! integral
equations for the pair distribution function of a hard-sphere
fluid. Although Eqs.~3.13! and ~3.14! usually are identified
in the literature as Percus-Yevick equations of state, Eq.
~3.13! first was obtained by Reiss, Frisch, and Lebowitz@11#
on the basis of the scaled particle theory.

Compressibility factors calculated from this collection of
formulas are presented in Table I. In each case we have
computed the mean square deviation of the compressibility
factor from that given by the ‘‘exact’’ seventh order virial
polynomial ~1.6!. Because this truncated virial series has
been selected as our standard, the approximate equation of
state with the smallest mean square deviation may not be that
which best fits the computer simulation data. Indeed, there
are several semiempirical equations of state@12,13# ~in addi-
tion to the well known Pade´ approximants! that have been
constructed to produce better agreement with the available
simulation data than does the eight-term virial polynomial.
We have chosen the latter as our basis for comparison be-
cause virial coefficients are the input data to our PFRG cal-
culations. The simulation data are included in Figs. 1 and 5
in order to indicate the degree by which they differ from the
predictions of the virial polynomial~1.6! and our PFRG ap-
proximation. It is clear that the agreement generally is quite
good between the predictions of the analytical equations of
state and the computer generated ‘‘experimental results.’’
The entries in Table I indicate that the PFRG formula~3.7!
with h050.166 is the most successful in reproducing the sev-

enth order virial polynomial. It should be recalled that this
formula is based on the values of only two virial coefficients,
B̃254 andB̃3510. Next in accuracy to the PFRG formula is
the cumulant series~3.10!, followed by the iterative PFRG
calculation based on Eq.~3.9! and the appealingly simple
Shinomoto equation~3.11!.

It is interesting to see how PFRG results based on the
second order polynomial approximation~3.1! compare with
the predictions of a renormalization group computation
based on the entire seventh order polynomial~1.6!. The in-
finitesimal generators associated with the latter are easily
computed from the formulas

g~g!5g
] ln f~g!

]g
~3.15!

and

b~g!5g2
]2 ln f~g!

]g2 Y S ]g

]gD . ~3.16!

Their graphs are shown in Figs. 3 and 4. The solution of the
equationb(g* )50 is a single, nontrivial, stable fixed point
at g*50.6248. This corresponds to a volume fraction of
h50.6248 which falls within the range 0.6460.02 that Ber-
ryman@14# recently has estimated for the random close pack-
ing ~RCP! of a hard-sphere fluid.~His paper also includes an
extensive bibliography pertaining to earlier estimates of
hRCP.! The tentative identification of the stable fixed point
with the condition of random close packing seems reason-
able since, according to Eq.~2.2!, the PFRG transformation
can be interpreted as the continuous growth of hard-sphere
particles.

Using the calculated value ofg* we obtain the following
asymptotic formula for the compressibility of a dense~h
.0.4! hard-sphere fluid:

f~h!5f~g* !e3.7915@h/g*21#. ~3.17!

With f(g* ) calculated from Eq.~3.7!, this becomes

TABLE I. Compressibility factors. The entries in this table are values of the compressibility factor,f~h!,
computed from a variety of formulas. Identifying labels and text equation numbers appear at the head of each
column, viz., virial series, positive function renormalization group~PFRG!, cumulant expansion, PFRG
iteration, Shinomoto, Carnahan-Starling~CS!, Percus-Yevick compressibility~PYC!, and Percus-Yevick
virial ~PYV!. At the bottom of each column appears the value of the mean squared deviations2, defined
according to Eq.~3.8! of the text. The tabular entries for the PFRG in column 2 were computed using the
valueh050.166 identified in the text.

h

Virial
series

Eq. ~1.6!
PFRG
Eq. ~3.7!

Cumul.
Eq. ~3.10!

PFRG
~iter.!

Eq. ~3.9!
Shinomoto
Eq. ~3.11!

CS
Eq. ~3.12!

PYC
Eq. ~3.13!

PYV
Eq. ~3.14!

0.1 1.5216 1.5273 1.5216 1.5186 1.5220 1.5213 1.5226 1.6872
0.2 2.4093 2.4111 2.4095 2.4091 2.4109 2.4062 2.4219 2.9688
0.3 3.9773 3.9959 3.9825 3.9879 3.9749 3.9738 4.0525 5.4519
0.4 6.8502 6.8761 6.8982 6.8867 6.8210 6.9259 7.2222 10.5556
0.5 12.2308 12.2144 12.4270 12.406 12.1825 13.0000 14.0000 22.0000
0.6 22.3157 22.3148 22.1926 23.309 22.6464 27.2500 30.6250 51.2500

s2 0 0.0002 0.093 0.1697 0.188 4.1575 12.0532 158.1462
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f~h!50.5852e6.0883h, h.0.4. ~3.18!

Predictions based on the seventh order virial polynomial
~1.6!, the PFRG formula~3.7!, and the asymptotic formula
~3.18! are shown in Figs. 1 and 5. In both figures the PFRG
and virial polynomial predictions are indistinguishable.
Thus, the PFRG method clearly provides a remarkably effi-
cient procedure for resumming the truncated, two-term virial
polynomial of Eq.~3.1!. The points appearing in these fig-
ures indicate results of computer simulations performed by
Barker and Henderson@15#, Wood @16#, Rotenberg@17#, Er-
penbeck and Wood@18# and Woodcock@19#. Except for den-
sities so low thath,0.4 and nearly as great as that at random
close packing, the computer simulation results are described
quite well by the exponential asymptotic law of Eq.~3.18!.
The fixed points of the PFRG transformation atg50 and
0.6248, respectively, can be interpreted as the limits of
weakly and strongly interacting systems composed of ran-
domly distributed hard-sphere particles.

A disconcerting aspect of the PFRG results displayed in
Figs. 1 and 5 is their failure to exhibit any trace whatsoever
of the singular behavior that surely must occur as the density
approaches that of closest packing. One could dismiss this
whole issue as being peripheral to the stated objective of the
present paper, namely, the determination of whether and/or
to what extent the PFRG method is capable of resumming a
truncated, perturbative virial series. However, since the high
density behavior of the rigid-sphere system has been an in-
triguing and controversial issue for over 40 years, it is natu-
ral to wonder why the PFRG method, as presented above,
appears to fail in this limit. Before attempting to answer this
question, let us briefly examine the computer simulation data
included in Figs. 1 and 5 in order to determine what the
‘‘expected’’ high-density behavior really is.~These data are
representative, but by no means exhaustive, of studies made
over the period extending from 1960 to the present.! Because
three different measures of the density are in common use,
we have prepared Table II to facilitate comparisons;
h5nps3/6, ns35(6/p)h51.90986h, and V/V05(p&/
6)h2150.74048h21.

Woodcock’s@19# compressibility factors, indicated by the
diamonds~L!, being to deviate from the eight-term virial
polynomial curve at the ‘‘freezing point’’~FP! density of
h50.493 and then rise much more rapidly ash approaches a
value of about 0.62, corresponding to the volume fraction
0.6460.02 @14# at random closest packing~RCP!. Wood’s
@18# results~(! follow the virial polynomial curve to higher
densities than Woodcock’s and then rise more abruptly as the
RCP density is approached. Rotenberg’s@17# much earlier
simulations ~n! produce compressibility factors which
closely follow the virial polynomial curve to abouth;0.69
and then rise rapidly in the vicinity ofh;0.74, correspond-
ing to the volume fraction 0.7405 at ordered closest packing
~OCP!.

With this information in mind, we now return to the ques-
tion of why the PFRG method has failed to produce a com-
pressibility factor that grows rapidly as the fluid density ap-
proaches eitherhRCP50.64 orhOCP50.74. The short answer
is that the PFRG method will produce a behavior that might
possibly be interpreted as the occurrence of a high-density
phase transition@or simply a singularity off~h!# only if
there is a violation of the requirement~cf. Appendix B! that
the infinitesimal generatorg(g) be a single-valued function
of its argument. The approximate infinitesimal generators
@cf. Eq. ~3.5! and Fig. 4# used to calculate the curves of Figs.
1 and 5 are monotonically increasing functions ofg, thus
explaining why the corresponding compressibility factors be-
have as they do. It could be that, although these generators

FIG. 3. The infinitesimal generatorb(g) of
Eq. ~3.15! computed from the eight-term virial
polynomial of Eq.~1.6!.

TABLE II. Different measures of density.

h ns3 V/V0 Comment

0.494 0.943 1.500 Freezing point~Ref. @20#!
0.540 1.031 1.371 Melting point~Ref. @20#!
0.560 1.070 1.322 $Density of sudden crystallization

~Ref. @19#!%0.566 1.080 1.309
0.640 1.222 1.157 Random closest packing 0.6460.02,

~Ref. @14#!
0.740 1.414 1.000 Ordered closest packing~fcc and hcp!
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are capable of predicting very accurate ‘‘liquidlike’’ com-
pressibility factors, they lack something essential to the de-
scription of this liquid as its density approaches that of clos-
est packing. To test this conjecture we have calculatedg(b)
and b(b) using Eqs.~3.15! and ~3.16! and the cumulant
expansion~3.10!, which presumably is more accurate than
the corresponding seventh order virial polynomial~1.6!. This
produces an asymptotic value ofg*50.4982 for the effec-
tive coupling coefficient, cf. Fig. 6@The occurrence of this
stable fixed point atg*50.4982 depends in an essential way
on the eighth virial coefficient of Eq.~1.6!. When this coef-
ficient is omitted, the corresponding cumulant expansion
produces an infinitesimal generatorb(g), which fails to ex-
hibit a fixed point forh.0.#

In the neighborhood of the fixed point the compressibility
factor is given by the expression

f~h!8f~0.4982!expF2.9779S h

0.4982
21D G

50.6159e5.9773h. ~3.19!

On the scales of Figs. 1 and 5, this is virtually indistinguish-
able from our previous result~3.18!. In the immediate vicin-
ity of the fixed point the asymptotic equation of state~3.19!
can be replaced with the scaling relation

f~h! '
h→h*

f~0.4982!S h

0.4982D
2.9779

. ~3.20!

The fixed point densityh*50.4982 is very nearly equal to
the freezing point densityhFP50.494 estimated by Ree and
Hoover @20#.

The infinitesimal generatorb(g) associated with the cu-
mulant expansion~3.10! is discontinuous at the value
g#50.5798 for which]g/]g is equal to zero; cf. Fig. 7. This
value lies near the melting-point densityhMP50.54 esti-
mated by Ree and Hoover on the basis of their simulation
data.

FIG. 4. The infinitesimal generatorg(g) of
Eq. ~3.16! computed from the eight-term virial
polynomial of Eq.~1.6!.

FIG. 5. Estimates of the compressibility factor
using scales and ranges different from those of
Fig. 1. The labels used to identify different for-
mulas and simulations are the same as those iden-
tified in the caption of Fig. 1. It is interesting to
note that the rapid increase off~h! that occurs at
high densities shifts to higher densities as the
number of particles used in the simulation in-
creases from 32 and 256 in Wood’s Monte Carlo
computations~and 512 in those of Woodcock! to
864 in those of Rotenberg.
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Although the quantitative aspects of these last few results
must be viewed with caution, it does appear that the PFRG
theory may be capable of accounting for some sort of a high-
density phase transition in a hard-sphere fluid. And, indeed,
it is plausible to conclude that the hard-sphere system de-
scribed by the PFRG theory is a fluid, the stability limit of
which is the densityg# at whichdg/dg50. For densities in
excess ofg# the equilibrium state of the system is then a
two-phase dispersion of solid crystallites imbedded in a fluid
of densityg* . The evidence presented here does not estab-
lish the validity of these conjectures nor have our calcula-
tions proved that the PFRG method actually is capable of
describing such a phase transition, but the possibilities do
exist. Truly convincing demonstrations would require a more
ambitious investigation than that presented here.

The specific application of the PFRG approach presented
in this paper is different both in intent and methodology from

most previously reported methods~e.g., Pade´ approximants,
semiempirical equations of state!, which are designed to ex-
tend the range of applicability of the virial series by invoking
assumptions about the functional form of the relationship
f5f~h! and/or by introducing adjustable parameters to en-
sure agreement with simulation data. In contrast to this, the
PFRG method, as used here, has relied upon only two as-
pects of a hard-sphere fluid:~1! that the compressibility fac-
tor f~h! is a positive valued, continuous function ofh and
~2! that one possesses~or can generate! a truncated power
series approximation to this function which is accurate for
small values ofh.

IV. DISCUSSION

The hard-sphere compressibility factor problem has pro-
vided an excellent illustrative example of the positive func-

FIG. 7. The infinitesimal generatorg(g) com-
puted using the cumulant expansion~3.10!.

FIG. 6. The infinitesimal generatorb(g)
computed using the cumulant expansion~3.10!.
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tion renormalization group~PFRG! technique outlined in
Sec. II of this paper. Indeed, we have found~rather to our
surprise! that the method almost perfectly reproduces the
seventh order virial polynomial over the entire range of vol-
ume fractions, except in the immediate vicinity of random
close packing.

Our formulation of the PFRG method has been closely
patterned after the ideas advanced by Shirkov@4#. However,
in implementing these ideas we have fashioned a theory
which differs in several significant ways from most previous
adaptations of the RG method to problems in statistical phys-
ics. In particular, we strongly support the emphasis that
Shirkov places on the importance of determining the func-
tional equation satisfied by the physical propertyf (x,g). It is
essential to the method that this functional equation be es-
tablished at thebeginningof the investigation, since it de-
fines the group operation for the class of functions to which
f (x,g) belongs. In the case considered here, the class of
functionsf (t,g) representative of the nonlinear PFRG satisfy
two conditions:~1! f (x,g)>0, x>1 ~positive definiteness!,
and ~2! ] f (x,g)/]xux51 is a single-valued~invertible! func-
tion of the coupling parameterg. Once the functional group
operation equation~2.10! has been established, the appropri-
ate Lie equations of evolution can be constructed, along with
defining expressions for the associated infinitesimal genera-
tors b(g) andg(g) of the PFRG.@Approximations for the
latter can be constructed from an initial ‘‘perturbative’’ se-
ries for f (x,g).# Our procedure differs in these respects from
many other RG techniques and, in particular, from the so-
called ‘‘direct’’ renormalization group method, users of
which @21,22# tend to take a much more relaxed view than
we do about the relationship between the object function
f (x,g) and the effective coupling functionḡ(x,g).
We also are of the opinion that the asymptotic properties

of the functionf (x,g) are fixed by the equation for the func-
tional group operation~and/or by the corresponding Lie
equations! and therefore are specific to the class of functions
under consideration. This leads us to doubt the objectivity of
formulations of the RG technique which produce some pre-
assigned asymptotic behavior such as, for example, a ‘‘uni-
versal’’ power law dependence on the group parameterx.

In a separate paper we shall present a more detailed com-
parison of various approaches to the RG method. Here we
only mention the fact that different equations of evolution
can be used to describe various parts of the RG trajectory
f (x,g5const!. However, in order to establish the ‘‘true’’ as-
ymptotic behavior of the function it is necessary to identify
the functional group operation equation for whichf (x,g) is
representative.

Perturbation series of the form~2.1! are encountered in
many applications of statistical mechanics. Well known ex-
amples include high-temperature expansions for properties
of magnetic systems and virial series for macroparticle dif-
fusion coefficients and for the viscosity of suspensions. We
shall examine some of these in future tests of the PFRG
method.
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APPENDIX A

Equation ~2.12! for the effective coupling function is a
direct consequence of the commutivity condition, according
to which

f̃ ~ tz,g![ f̃ ~zt,g!. ~A1!

From this identity and Eq.~2.10! we obtain a relationship

f̃ ~z,g!@ f̃ ~ t,ḡ~z,g!#z[ f̃ ~ t,g!@ f̃ „z,ḡ~ t,g!…# t, ~A2!

which can be satisfied only for a very special choice of the
function ḡ(t,g). To find the functional equation satisfied by
this effective coupling function we rewrite Eq.~A2! in the
form

@ f̃ „t,ḡ~z,g!…#z[
f̃ ~ t,g!

f̃ ~z,g!
@ f̃ „z,ḡ~ t,g!…# t. ~A3!

Then, using Eq.~2.11! to replace the factorf̃ (t,g)/ f̃ (z,g)
with @ f̃ „t/z,ḡ(z,g)…#z, we rewrite~A3! as

F f̃ ~ t,ḡ~z,g!!

f̃ S tz ,ḡ~z,g! D G
z

[@ f̃ „z,ḡ~ t,g!…# t. ~A4!

The result of applying Eq.~2.11! to the ratio of transfer func-
tions appearing on the left-hand side of Eq.~A4! is the equa-
tion

F f̃ X t
t/z

,ḡS tz ,ḡ~z,g! D CG ~ t/z!z

[@ f̃ ~z,ḡ~ t,g!# t, ~A5!

or, equivalently,

F f̃ Xz,ḡS tz ,ḡ~z,g! D CG[@ f̃ „z,ḡ~ t,g!…#. ~A6!

This equality holds if and only if the functionḡ(t,g) satisfies
the functional equation

ḡS tz ,ḡ~z,g! D5ḡ~ t,g!, ~A7!

which is identical to Eq.~2.12! of the text.

APPENDIX B

The effective coupling functionḡ(t,g) must be selected
in such a way that the Lie equation~2.13! for f̃ (t,g) is a
mathematical identity. This is possible only if the infinitesi-
mal generatorg(g) is a single-valued function of the bare
coupling constantg. More specifically, let us assume there to
be a one-to-one correspondence

z5g~g! ~B1!

between the variablesz andg. There consequently exists an
inverse functiong21 such that

g5g21~z!. ~B2!

We then conclude, with reference to Eq.~2.13!, that
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ḡ~ t,g!5g21S ] ln f̃ ~ t,g!

]t D . ~B3!

This means that there is to each functionf̃ (t,g) a corre-
sponding functionḡ(t,g) which, in turn, is determined by
the Lie equation~2.14! in which appears the infinitesimal
generator

b~g!5 lim
x→1

]

]x
g21S ] ln f̃ ~x,g!

]x D . ~B4!

In other words, our PFRG method can be used to determine
functions f̃ (x,g) that are~1! positive definite and~2! for
which ] f̃ (x,g)/]xux515g(g) is a single-valued function.

APPENDIX C

An alternative set of evolution equations for the PFRG
can be obtained by differentiating the functional equations

~2.11! and~2.12! with respect to the ‘‘dilation factor’’z and
then settingz equal to unity. The results of these manipula-
tions are two linear, first order differential equations,

05g~g!1 ln f̃ ~x,g!2x
] ln f̃ ~x,g!

]x
1b~g!

] ln f̃ ~x,g!

]g
~C1!

and

05b~g!
]ḡ~x,g!

]g
2x

]ḡ~x,g!

]x
. ~C2!

These are analogous to the Callan-Symanzik equations of the
standard RG theory.
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